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Abstract— This research paper is intended to provide the 
analysis of neural waves generated during two stages the 
awake stage and sleep stage of the particular subject. The 30 
second awake signal analysis while subject approaching sleep 
stage and 30 sec initial sleep stage analysis is considered in the 
research work.   

I. INTRODUCTION 

The brain is the most complex and integral part of human 
body. The brain comprises of complex network of billions 
of neurones. These neurones show particular activity at 
various brain location in different situation. Along with this, 
neurones network communicates with each other through 
small electrical signals of around µV. Resultant is the 
generation of electrical signals. Analysis of these signals 
can lead us to several conclusions.        

II. ELECTROENCEPHALOGRAM(EEG)

Electroencephalography (EEG) is an electrophysiological 
monitoring method to record electrical activity of the brain. 
It is typically non-invasive, with the electrodes placed along 
the scalp, although invasive electrodes are sometimes used 
in specific applications. EEG measures voltage fluctuations 
resulting from ionic current within the neurons of the brain. 
In clinical contexts, EEG refers to the recording of the 
brain's spontaneous electrical activity over a period of time, 
as recorded from multiple electrodes placed on the scalp. 
Diagnostic applications generally focus on the spectral 
content of EEG, that is, the type of neural oscillations 
(popularly called "brain waves") that can be observed in 
EEG signals. 

In EEG system, there is an electrode pair in which one is 
reference electrode and other electrode measures the 
voltage fluctuations due to neural oscillations. The research 
system for the EEG measurement internationally 
recognized is International 10-20 system. 

III. METHOD 

Once the EEG signals are obtained they are amplified 
using differential amplifiers as the signal obtained from the 
brain are of very low magnitude. Signals are then digitized 
via analog-to-digital converter using 256-512 Hz with 
sampling rate up to 20KHz. Further processing of the 
signals includes the filtering of EEG signals. The EEG 
signals are then passed through .1Hz low pass filter to 

100Hz high pass filter and notch filter to remove the 
disturbance created by electric power line. The artifacts 
recorded in the signals are then removed through various 
other method. 

The EEG is typically described in terms of rhythmic 
activity. The rhythmic activity is divided into bands by 
frequency. To some degree, these frequency bands are a 
matter of nomenclature (i.e., any rhythmic activity between 
8–12 Hz can be described as "alpha"), but these 
designations arose because rhythmic activity within a 
certain frequency range was noted to have a certain 
distribution over the scalp or a certain biological 
significance. Frequency bands are usually extracted using 
spectral methods as implemented for instance in freely 
available EEG software such as EEGLAB. Computational 
processing of the EEG is often named Quantitative 
electroencephalography (qEEG). Most of the cerebral signal 
observed in the scalp EEG falls in the range of 1–20 Hz. 
Waveforms are subdivided into bandwidths known as 
alpha, beta, theta, gamma and delta. 

TABLE 1 
  NEURAL WAVE SPECTRUM 

Name of the wave Frequency [Hz] 
Delta 0.1 – 4
Theta 4 – 8 
Alpha 8 – 13
Beta 13 – 30 
Gamma 40 – 80 

IV. FOURIER ANALYSIS

   A Fourier series decomposes of a periodic signal x(t) in 
terms of an infinite sum of sines and cosines (or complex 
exponentials) [14, 6]. Mathematical formula of a Fourier 
series is presented by following formula (1): 

ሻݐሺݔ ൌ
௔బ
ଶ
൅ ∑ ሺܽ௡ COSሺ߱݇ݐሻ ൅ ܾ௡ SINሺ߱݇ݐሻሻ,

ஶ
௞ୀଵ 			(1).  

where signal x(t) is integrable on an interval [0, T] and is 
periodic with period T,  t is a time variable, ߱ is an angular 
frequency and ܽ଴,ܽ௡, ܾ௡ are Fourier coefficients. The 
expression, angular frequency, is presented as (2): 

߱ ൌ
ଶగ

்
		(2). 

The Fourier coefficient can be obtained by formulas (3-4): 
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ܽ௡ ൌ
ଶ

்
׬ ሻݐሺݔ cosሺݐ݇ݓሻ ,ݐ݀ ݇ ൌ 0,1,2… ,ܰ
்
଴  (3).  

 

ܾ௡ ൌ
ଶ

்
׬ ሻݐሺݔ sinሺݐ݇ݓሻ ,ݐ݀ ݇ ൌ 1,2… ,ܰ
்
଴   (4). 

 

On the basis of Euler’s formula (5): 
 

݁௝௧ ൌ ݐݏ݋ܿ ൅  .(5)    ,ݐ݊݅ݏ݆
 

Fourier series can be also presented as (6): 
 

ሻݐሺݔ ൌ ∑ ܿ௡. ݁௝ఠ௞௧
௞ୀஶ
௞ୀିஶ     (6).  

 
where coefficient n c is obtained as (7): 
 

ܿ௡ ൌ
ଵ

்
׬ ሻݐሺݔ
்
଴ ݁ି௝ఠ௞௧݀(7)    ݐ.  

 

A generalization of Fourier series, for infinite domains, is 
Continuous Fourier Transform (CFT). CFT is used to 
transform signals between time domain and frequency 
domain. The term CFT is presented as (8):  
 

ሻߦሺܨ ൌ ׬ ሻݐሺݔ
ஶ
ିஶ ݁ିଶగ௧௝క݀(8)   ݐ. 

 

Then the inverse CFT (to transform signals between 
frequency domain and time domain) can be written as (9): 
 

ሻݐሺݔ ൌ ׬ ሻߦሺܨ
ஶ
ିஶ ݁ିଶగ௧௝క݀(9)   ߦ. 

 

 If the signal is periodic, band-limited and sampled at 
Nyquist frequency or higher, the CFT is represented exactly 
by Discrete Fourier Transform (DFT). DFT transforms the 
sequence of N complex numbers ݔ଴,  ேିଵ (the timeݔ,……,ଵݔ
domain) into an N-periodic sequence ܺ଴, ଵܺ, … , ܺேିଵ (the 
list of coefficient  of a finite combination of complex 
sinusoids, ordered by their frequencies). It is according to 
the DFT formula [10] (10): 
ܺ௞ ൌ ∑ ௡ேିଵݔ

௡ୀ଴ ݁ିଶగ௝௞௡/ே    (10). 
 

Each ܺ௞element encodes amplitude and phase of a 
sinusoidal component of function ݔ௡. Inverse conversion to 
the DFT is the Inverse DFT (IDFT). The IDFT transforms 
data from the frequency domain to the time domain. It is 
according to the IDFT formula (11): 
 

௡ݔ ൌ
ଵ

ே
∑ ܺ௞
ேିଵ
௞ୀ଴ ݁ଶగ௝௞௡/ே    (11). 

 

In this paper, A Fast Fourier Transform (FFT) is used as 
efficient algorithm to compute the DFT and its inverse 
(IFFT to compute IDFT) [1, 2]. Computational complexity 
is ܱሺܰଶ) for standard DFT and N(log N) for FFT 
procedure. FFT algorithm is based on Divide and Conquer 
algorithm. It divides the transform of size N to transform 
the size ଵܰ and ଶܰ . In this paper, the FFT algorithm is 
using for size of sample, according formula (12): 
 

ܰ ൌ 2௞      (12). 
 

where k is a natural number. 
 

V. POWER SPECTRAL ANALYSIS 

The goal of spectral estimation is to describe the 
distribution (over frequency) of the power contained in a 
signal, based on a finite set of data. Estimation of power 
spectra is useful in a variety of applications, including the 
detection of signals buried in wideband noise. 

The power spectral density (PSD) of a stationary random 
process x(n) is mathematically related to the autocorrelation 
sequence by the discrete-time Fourier transform. In terms of 
normalized frequency, this is given by (13): 

௫ܲ௫ሺ߱ሻ ൌ
ଵ

ଶగ
∑ ܴ௫௫ஶ
௠ୀିஶ ሺ݉ሻ݁ି௝ఠ௠  (13).  

 
This can be written as a function of physical frequency f 
(e.g., in hertz) by using the relation ω = 2πf / fs, where fs is 
the sampling frequency (14): 
 

௫ܲ௫ሺ݂ሻ ൌ
ଵ

௙ೞ
∑ ܴ௫௫ஶ
௠ୀିஶ ሺ݉ሻ݁ି௝ଶగ௠௙/௙ೞ  (14). 

The correlation sequence can be derived from the PSD by 
use of the inverse discrete-time Fourier transform (15): 
ܴ௫௫ሺ݉ሻ ൌ ׬ ௫ܲ௫

గ
ିగ

ሺ߱ሻ݁௝௪௡݀߱ ൌ ׬ ௫ܲ௫
௙ೞ/మ
ି௙ೞ/మ

ሺ݂ሻ݁௝ଶగ௠௙/௙ೞ݂݀	(15). 

 
The average power of the sequence x(n) over the entire 
Nyquist interval is represented by (16): 

ܴ௫௫ሺ0ሻ ൌ ׬ ௫ܲ௫
గ
ିగ

ሺ߱ሻ݀߱ ൌ ׬ ௫ܲ௫
௙ೞ/మ
ି௙ೞ/మ

ሺ݂ሻ݂݀  (16). 

 
The average power of a signal over a particular frequency 
band [ω1, ω2], 0 ≤ ω1 ≤ ω2 ≤ π, can be found by 
integrating the PSD over that band (17): 
 

ሾܲఠభ,ఠమሿ ൌ ׬ ௫ܲ௫
ఠమ
ఠభ

ሺ߱ሻ݀߱ ൌ ׬ ௫ܲ௫ሺ߱ሻ݀߱
ିఠభ
ିఠమ

 (17). 

 
We can see from the above expression that Pxx(ω) 

represents the power content of a signal in an infinitesimal 
frequency band, which is why it is called the power spectral 
density. 

The units of the PSD are power (e.g., watts) per unit of 
frequency. In the case of Pxx(߱), this is 
watts/radian/sample or simply watts/radian. In the case of 
Pxx(f), the units are watts/hertz. Integration of the PSD 
with respect to frequency yields units of watts, as expected 
for the average power. 

For real–valued signals, the PSD is symmetric about DC, 
and thus Pxx(ω) for 0 ≤ ω ≤ π is sufficient to completely 
characterize the PSD. However, to obtain the average 
power over the entire Nyquist interval, it is necessary to 
introduce the concept of the one-sided PSD. 
The one-sided PSD is given by (18): 
 

௢ܲ௡௘ି௦௜ௗ௘ௗሺ߱ሻ ൌ ൜
0,																										 െ ߨ ൑ ߱ ൏ 0,
2 ௫ܲ௫ሺ߱ሻ,																		0 ൑ ߱ ൑  .(18) .ߨ

 
The average power of a signal over the frequency band, 
[ω1,ω2] with 0 ≤ ω1 ≤ ω2 ≤ π, can be computed using the 
one-sided PSD as (19): 
 

ሾܲఠభ,ఠమሿ ൌ ׬ ௢ܲ௡௘ି௦௜ௗ௘ௗ
ఠమ
ఠభ

ሺ߱ሻ݀߱  (19). 
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VI. EXPERIMENT AND RESULTS 

The readings taken at same time, from various electrodes 
of EEG system were summed up to observe the overall 
distribution of spectral power. The research was conducted 
on the overall power distribution.    

The analysis of two samples from two subject each 
sample of transition from awake stage to initial sleep stage 
was done. PSD during 30 seconds before sleep stage 
(Awake Stage) and 30 second after sleep stage (Sleep 
Stage) are compared. Fig. 1 and Fig. 2 shows the signal and 
PSD of Awake Stage for subject 1 sample 1. Fig. 3 and Fig. 
4 shows the signal and PSD of Sleep Stage for subject 1 
sample 1. Fig. 5 and Fig. 6 shows the signal and PSD of 
Awake Stage for subject 1 sample 2. Fig. 7 and Fig. 8 
shows the signal and PSD of Sleep Stage for subject 1 
sample 2. Fig. 9 and Fig. 10 shows the signal and PSD of 
Awake Stage for subject 2 sample 1. Fig. 11 and Fig. 12 
shows the signal and PSD of Sleep Stage for subject 2 
sample 1. Fig. 13 and Fig. 14 shows the signal and PSD of 
Awake Stage for subject 2 sample 2. Fig. 15 and Fig. 16 
shows the signal and PSD of Sleep Stage for subject 2 
sample 2.  

 
Fig. 1 Subject-1 Sample-1 Awake Signal 

 

 
Fig. 2 Subject-1 Sample-1 Awake PSD 

 

 
Fig. 3 Subject-1 Sample-1 Sleep Signal 

 

 
Fig. 4 Subject-1 Sample-1 Sleep PSD 

 

 
Fig. 5 Subject-1 Sample-2 Awake Signal 

 

 
Fig. 6 Subject-1 Sample-2 Awake PSD 

 

 
Fig. 7 Subject-1 Sample-2 Sleep Signal 

 

 
Fig. 8 Subject-1 Sample-2 Sleep PSD 
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Fig. 9 Subject-2 Sample-1 Awake Signal 

 

 
Fig. 10 Subject-2 Sample-1 Awake PSD 

 

 
Fig. 11 Subject-2 Sample-1 Sleep Signal 

 

 
Fig. 12 Subject-2 Sample-1 Sleep PSD 

 

 
Fig. 13 Subject-2 Sample-2 Awake Signal 

 

 
Fig. 14 Subject-2 Sample-2 Awake PSD 

 

 
Fig. 15 Subject-2 Sample-2 Sleep Signal 

 

 
Fig. 16 Subject-2 Sample-2 Sleep PSD 

   
 The results were analysed and a classification was made 
for each sample from the subjects. The below table shows 
the total power spectral density, percentage and original 
values of contribution of each spectrum during awake and 
sleep stage. Table I (Sample 1) and Table II (Sample 2) are 
for subject 1. Table III (Sample 1) and IV (Sample 2) are 
for subject 2. 
 

TABLE I 
SUBJECT 1 SAMPLE 1 AWAKE SLEEP POWER DISTRIBUTION 

ACCORDING TO SPECTRUM   
Total Power 

→ 
Awake 4438.8 Sleep 1355.2 

 Percentage Power Distribution 

Spectrum↓ Awake Sleep Awake Sleep 

Delta 86.6 38.7 3844.0008 524.4624 
Theta 5.2 19.1 230.8176 258.8432 
Alpha 3.1 26.8 137.6028 363.1936 
Beta 4.6 14.4 204.1848 195.1488 

Gamma 0.3 0.3 13.3164 4.0656 
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Fig.17 PSD of Spectrums in Sleep and Awake stage of sample 1 subject 1 

 
TABLE II 

SUBJECT 1 SAMPLE 2 AWAKE SLEEP POWER DISTRIBUTION 
ACCORDING TO SPECTRUM   

Total Power 
→ 

Awake 4998.8 Sleep 1916.8 

 Percentage Power Distribution 

Spectrum↓ Awake  Awake Sleep 

Delta 91 70.3 4548.908 1347.5104 

Theta 2.9 12.9 144.9652 247.2672 

Alpha 1.7 8.7 84.9796 166.7616 

Beta 4.1 7.4 204.9508 141.8432 

Gamma 0.1 0.2 4.9988 3.8336 
 
 
 

 
Fig.17 PSD of Spectrums in Sleep and Awake stage of sample 2 subject 1 

 
TABLE III 

SUBJECT 2 SAMPLE 1 AWAKE SLEEP POWER DISTRIBUTION 
ACCORDING TO SPECTRUM   

Total Power 
→ 

Awake 3379 Sleep 2448.5 

 Percentage Power Distribution 

spectrum↓ Awake Sleep Awake Sleep 

Delta 59.7 41.8 2017.263 1023.473 

Theta 12.7 16 429.133 391.76 

Alpha 15.9 29.2 537.261 714.962 

Beta 11.1 12.1 375.069 296.2685 

Gamma 0.2 0.2 6.758 4.897 

 
Fig.17 PSD of all Spectrums in Sleep and Awake stage of sample 1 subject 2 

 
TABLE IV 

SUBJECT 2 SAMPLE 2 AWAKE SLEEP POWER DISTRIBUTION 
ACCORDING TO SPECTRUM   

Total Power 
→ 

Awake 8021.2 Sleep 3290.4 

 Percentage Power Distribution 

Spectrum↓ Awake Sleep Awake Sleep 

Delta 79.2 42.3 6352.79 1391.8392 

Theta 5.1 19 409.081 625.176 

Alpha 9.8 30.6 786.07 1006.8624 

Beta 5 7.1 401.06 233.6184 

Gamma 0.4 0.4 32.0848 13.1616 
 
 
 

 
Fig.17 PSD of all Spectrums in Sleep and Awake stage of sample 2 subject 2 

 
 

  Through above mentioned reading it can be deduced that 
during sleep stage power of alpha waves increases whereas 
the power of Delta, Beta and Gamma waves reduces.   
 

VII. CONCLUSIONS 

This paper presents the method of processing and 
observation of neural signals. The Fourier analysis and 
Power Spectral Density has always been an efficient way 
for observing various spectrum. During this research two 
sample each of combined 60 seconds during awake to sleep 
stage transition was considered. After that each sample was 
compared with each other to draw the conclusion. 
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In the result, it was observed that during awake stage 
Alpha waves contributed low magnitude in total power 
where as in sleep stage Alpha waves had major 
contribution, even more than that during awake stage. 
Whereas the contribution of Delta, Beta and Gamma waves 
were reduced during the Sleep Stage compared to Awake 
Stage. These observations could be useful to the system 
engaged in detection of transition of a human being from 
awake stage to sleep stage. 
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